Exercise 59

Find equations of both lines that are tangent to the curve $y=x^{3}-3 x^{2}+3 x-3$ and are parallel to the line $3 x-y=15$.

Solution

Writing the given equation of the line as

$$
y=3 x-15,
$$

we see that it has a slope of 3 . The aim is to take the derivative of the given function and find where it's equal to 3 .

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x^{3}-3 x^{2}+3 x-3\right) \\
& =\frac{d}{d x}\left(x^{3}\right)-\frac{d}{d x}\left(3 x^{2}\right)+\frac{d}{d x}(3 x)-\frac{d}{d x}(3) \\
& =\frac{d}{d x}\left(x^{3}\right)-3 \frac{d}{d x}\left(x^{2}\right)+3 \frac{d}{d x}(x)-\frac{d}{d x}(3) \\
& =\left(3 x^{2}\right)-3(2 x)+3(1)-(0) \\
& =3 x^{2}-6 x+3
\end{aligned}
$$

Set this equal to 3 and solve for x.

$$
\begin{gathered}
3 x^{2}-6 x+3=3 \\
3 x^{2}-6 x=0 \\
3 x(x-2)=0 \\
x=\{0,2\}
\end{gathered}
$$

Plug these values of x into the given function to get the corresponding y-values on the curve.

$$
\begin{aligned}
& y(0)=(0)^{3}-3(0)^{2}+3(0)-3=-3
\end{aligned} \quad \Rightarrow \quad(0,-3)
$$

Finally, determine the equation of the line with slope 3 that goes through the point $(0,-3)$.

$$
y+3=3(x-0)
$$

And determine the equation of the line with slope 3 that goes through the point $(2,-1)$.

$$
y+1=3(x-2)
$$

